
Using Software Product Lines for Runtime Interoperability

Norbert Siegmund
University of Magdeburg

Germany
nsiegmun@ovgu.de

Mario Pukall
University of Magdeburg

Germany
pukall@ovgu.de

Michael Soffner
University of Magdeburg

Germany
soffner@ovgu.de

Veit Köppen
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ABSTRACT
Today, often small, heterogeneous systems have to cooperate
in order to fulfill a certain task. Interoperability between
these systems is needed for their collaboration. However,
achieving this interoperability raises several problems. For ex-
ample, embedded systems might induce a higher probability
for a system failure due to constrained power supply. Never-
theless, interoperability must be guaranteed even in scenarios
where embedded systems are used. To overcome this problem,
we use services to abstract the functionality from the system
which realizes it. We outline how services can be generated
using software product line techniques to bridge the hetero-
geneity of cooperating systems. Additionally, we address
runtime changes of already deployed services to overcome
system failures. In this paper, we show the runtime adaption
process of these changes which includes the following two
points. First, we outline why feature-oriented programming
is appropriate in such scenarios. Second, we describe the
runtime adaption process of services with feature-oriented
programming.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; D.3.3
[Programming Languages]: Language Constructs and
Features —Modules, packages

General Terms
Design
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Software Product Lines, Runtime Adaption, Interoperability

1. INTRODUCTION
Nowadays, the number of complex systems which are built

from a set of heterogeneous hardware increase rapidly. Such
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a complex system often use small devices to collect data and
server systems to store the data. Examples are mechatronic
systems in cars, large sensor networks for flood warning
systems, and logistic hubs for cargo flow analysis. The sys-
tem architecture consists of many different small, embedded
systems that transfer and store required data. This raises
problems for interoperability between these systems. Because
of the different hardware of embedded devices, a developer
has to cope with interaction problems that are reasoned of
the diversity of different operating systems, communication
protocols, and provided functionality.

In order to realize the interoperability of multiple systems,
we have to design an interface which enables the communi-
cation between these systems. Our idea is to implement the
interface as a service integrated in a service-oriented architec-
ture whereas the architecture enforces the interoperability of
the whole system. With this approach, we can abstract the
functionality of a system from its realization. For example,
consider a system that retrieves data via a service from an-
other system that might be in one case an embedded system
and in another case a software emulation of this device. The
interface service contains different software modules where
each of them implements a different functionality needed for
the interoperability. Note, in both cases the service would
run on a server and not on the device itself. However, de-
veloping a service for each system is time consuming and
requires much effort. Today, already existing functionality
is commonly reimplemented although there are often only
few differences between embedded systems. A promising
technique to overcome this problem is software product lines
(SPLs). The goal of an SPL is to generate a family of related
products for a specific domain by reusing a common code
base between these products. A user can configure an SPL to
derive a tailor-made product which fits to her requirements.
We argue that the interoperability is an important domain
where SPLs can be applied. The variability in an SPL is
required to address a large number of heterogeneous systems
and to tailor the interfaces and communication protocols for
the actual application scenario.

High availability is important for service-oriented architec-
tures. Server systems can register services of other systems,
e.g., sensors to store the sensed data. However, if the sensor
fails, the server could be affected as well, because it might
provide itself a service where data is aggregated from such
a sensor. To keep the overall system stable, a promising
solution might be a runtime adaption of the sensor service to



replace the system behind, e.g., with a simulation program
based on historical data.

We argue that software product line techniques and run-
time adaption methods are promising to enforce the inter-
operability of many collaborating system based on a service-
oriented architecture. In this paper, we outline our decision
to use feature-oriented programming (FOP) [27, 6] as the
suitable programming technique to implement product lines.
Furthermore, we show the combination of FOP and how
wrappers can be used to allow dynamic FOP.

1.1 The Logistic Hub Application Scenario
In the research project ViERforES1, we observed the men-

tioned problems in several application scenarios. In this
paper, we concentrate on the analysis of a logistic hub of an
airport . We analyzed the required hardware and communi-
cation requirements. These are for example used to register
incoming and outgoing goods. In Figure 1 we show a subset
of the systems that are used in this domain. The hub uses
sensors to retrieve the status of arriving and stocking goods
and to maintain the cargo flow. Different sensors and differ-
ent embedded systems have to communicate and cooperate
with each other in order to visualize the hubs current state
at a control center and different user interface points, e.g.,
at mobile devices. In such a scenario, we are confronted
with a high dynamic environment. This results in frequent
changes of participating systems that have to cooperate with
each other. Since a logistic hub is a non-stoppable system,
the architecture has to adopt new information sources or
information consumers at runtime. Thus, we have to modify
existing services while the system is running. Non-stoppable
means, that we have to integrate new embedded devices
(e.g., intelligent cargo boxes) while the system is running or
automatically process a fail-over if a device is not available
anymore. Changing each client separately would cause high
maintenance costs and maybe down times. Therefore, we
aim on changing the service itself instead all its clients.

2. BACKGROUND
A software product line (SPL) is a group of products shar-

ing a common, managed set of features that satisfy specific
needs of one domain and that are developed from a common
set of core assets in a prescribed way [13, 22]. Different vari-
ants in an SPL are distinguished in terms of features, where
features are distinguishable, end-user visible characteristics
of a system or domain [14]. The overall goal of SPLs is to
systematically reuse software artifacts for different software
products. Commonly, a feature model is used to describe
variability of an SPL [14]. Feature models are represented in
a tree like form including boxes and connections to describe
the features and relationships between them. Relationships
might be mandatory or optional. Additionally, alternatives
and OR relationships can be defined to introduce further
variability into an SPL.

After the configuration of required features a program
generator, e.g., CIDE [19] generates the resulting source
code of selected features and compiles the composed files in
order to retrieve the desired product.

2.1 Runtime Program Adaptation

1http://vierfores.de
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Figure 1: Services for system interoperability in a
logistic hub.

Service-oriented architectures are commonly implemented
with the Java programming language [35]. This is because
Java’s platform independence. We decided to use Java the
implementation of the service-oriented architecture. However,
Java has no runtime adaption functionality. For this reason,
we developed an own approach to allow runtime adaption
for Java programs. Changing the functionality of a running
program is a multi-stage process. First, the classes which
implement the new functionality must be identified. Second,
the changes must be applied to these classes. Third, all
object references which refer to one of the changed classes
have to be updated in order to invoke the new or changed
functionality. Unfortunately, this process is not supported
by Java natively. In order to overcome this problem we
developed our own runtime adaptation approach [28]. It
satisfies the requirements resulting from the described process
and enables Java programs for large-scale runtime changes.

1 class SortedList {

2 List sl;

3 ...

4 void sortList() {

5 %Bubble Sort%

6 }

7 }

HotSwap

1 class SortedList {

2 List sl;

3 ...

4 void sortList() {

5 %Quick Sort%

6 }

7 }

Figure 2: Class schema keeping changes.

Schema keeping class updates. One probable reason
for changing a running program is to replace an algorithm
such as depicted in Figure 2, where the actual sorting al-
gorithm (BubbleSort) of class SortedList is replaced by the
faster QuickSort algorithm. In order to process the algorithm
replacement only requires to change the body of method
sortList() which does not affect the class schema. We achieve
such method body reimplementations using Java HotSwap



which is a feature of Sun’s standard Java virtual machine
called HotSpot2.

class SortedListWrap {

SortedList sl;

…

//Call forwarding

void sortList() {

sl.sortList();

}  

//new Function

void shuffleList() { /*Shuffle*/ }

}

class SortedList {

List l;

...

void sortList() {

/*Bubble Sort*/

}

}

Wrapper Wrappee

Figure 3: Class schema changing Updates.

Schema changing class updates. In many cases run-
time program changes require more complex class updates
then provided by Java HotSwap. Such a scenario is depicted
in Figure 3 where method shuffleList() must be added to
the program in order to undo the list sorting. We use object
wrapping to apply new elements such as methods to the pro-
gram. As shown in Figure 3 wrapper SortedListWrap adds
the new method to the program whereas class SortedList
continuously provides the sorting functionality.

1 class DisplayList {

2 SortedList sl;

3 ...

4 void display() {

5 sl.sortList();

6 …

7 }

8 }

1   class DisplayList {

2 SortedList sl;

3 ...

4 void display() {

5 SortedListWrap slw = new

6 SortedListWrap(sl);

7 slw.shuffleList();

8 …

9 }

10 }

HotSwap

Figure 4: Object reference updates.

Object reference updates. In order to invoke the new
or modified functionality provided by the wrapper all object
references of the changed class have to be updated. This is
also achieved via method reimplementations based on Java
HotSwap. Considering our example we suppose that an in-
stance of class SortedList is used by class DisplayList, see
Figure 4. To be able to invoke the new added method shuf-
fleList() method display() has to be reimplemented. Within
the reimplementation an instance of wrapper SortedListWrap
wraps sl of type SortedList (lines 5-6). Afterwards the wrap-
per instance is used to invoke the new functionality (line
7).

3. IMPLEMENTATION TECHNIQUES OF
SPLS

As we describe in Section 2, SPLs are intended to reduce
the development effort for a specific domain by reusing a
common set of core assets, e.g., by reusing components. For
this reason, we use an SPL to implement the services for
many different systems. However, there are a number of
possible techniques to implement an SPL. In this section, we
outline our decision to chose feature-oriented programming
to realize an SPL for service-oriented architectures.

3.1 Appropriate Techniques
2http://java.sun.com/javase/technologies/hotspot/

1 class Communication {

2 const int blueToothInit = 28000;

3 string ip = “192.168.1.0“;

4 TCP tcpChannel = new TCP();

5 bool sendData (byte*[] data) {

6 initBlueTooth();

7 tcpChannel.connect(ip);

8 tcpChannel.send(data);

9 tcpChannel.close();

10 }

11 };

Send

Bluetooth

TCP

Features

Figure 5: Excerpt of the communication class.

Possible programming approaches that can be used to im-
plement SPLs ranges from new programming paradigms, e.g.,
aspect-oriented programming (AOP) [20], feature-oriented
programming (FOP) [27, 6], preprocessor statements like
#IFDEFs in C programming language, and component based
approaches [15, 16, 32]. Note, that we have to consider that
approach to be used has to support runtime adaption because
it is required in the logistic hub scenario. Because prepro-
cessor statements only allow static product generation, we
do not consider it in our approach. The anatomy of runtime
changes is an important factor for the decision of the appro-
priate technique. By analyzing the needs of the logistic hub,
we figured out that fine-grained features are required for the
configuration. This is due to the needed variability in this
area. Furthermore, it is often the case that heterogeneous
crosscuts arise during the feature implementation. Heteroge-
neous crosscuts means that different join points are applied
with different code fragments. Homogeneous crosscuts which
affect multiple join points with the same code fragment are
very uncommon in our service-oriented architecture. We can
use existing criteria to chose the appropriate programming
technique [1, 3].

Components. Using components for runtime adaption has
the advantage that the runtime adaption process is very easy
to implement. Loading a component at runtime usually rises
no serious problems because it encapsulates a well defined
set of functionality. However, this encapsulated functionality
is often coarse-grained (multiple features in one component).
This is due to the fact that the implementation of crosscutting
features is very challenging and in some cases not possible [25].
Additionally, a fine-grained implementation of components
is not possible without a performance decrease [12]. In
our case, the SPL requires a fine-grained decomposition of
functionality, because it has to provide a large flexibility to
support heterogeneous systems. Therefore, components are
not suitable for our use case.

Using Aspects or Features Modules. Apel et al. analyzed
the advantages and drawbacks of AOP and FOP [1, 3]. One
result is that aspects should be used for homogeneous cross-
cuts and feature modules realized with FOP are suitable for
heterogeneous crosscuts. Runtime changes using AOP,known
as dynamic weaving, are demonstrated for example in [26]
and dynamic feature reconfiguration was successfully applied
in [29]. Hence, the choice of the appropriate programming
technique depends on the features implementation. In Figure



Interoperability SPL

Communication 
Protocol

TCP

Operating System

Mandatory

Optional

Alternative

Or

Constraint
require/exclude

Functionality

UDP CAN Win Linux MacOS Send Receive

Non-functional 
Properties

Bandwidth Footprint

Hardware

Bluetooth Serial
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Base Program

Class1 Class 2

Feature A

Wrapper 1a Class 3

Feature B

Wrapper 1b Wrapper 2a Wrapper 3a Class 4

Feature C

Wrapper 4a Class 5Wrapper 2b

Figure 6: Feature-oriented runtime adaption archi-
tecture.

5, we depict an excerpt of the communication class of the
service to be used which is composed from multiple features.
The feature Bluetooth requires initialization code which is
given in Line 2 and 6. If the feature Send is selected then
the send method must be included in the communication
class. Depending on the chosen communication protocol
the method body looks different. In our example, the TCP
protocol requires code to open communication (Line 7), send
data (Line 8), and close communication (Line 9). Related
to different features, this entanglement of code is very com-
mon in services. Because of these heterogeneous crosscuts of
functionality in different classes, we decided to use feature-
oriented programming.

3.2 Feature-oriented Runtime Adaption
FOP treats features of software as fundamental modules

of abstraction and composition. It allows programmers to
compose a family of similar programs based on domain spe-
cific features. These features are assembled together into
feature modules which are commonly implemented as incre-
ments in program functionality [6]. To derive a program,
a set of features is successively applied to a base program.
FOP can be used as an extension of different programming
paradigms. In this paper, we focus on FOP as an exten-
sion of object-oriented programming (OOP) using classes
as implementation units. In this case, a feature is usually
implemented by multiple collaborating classes. However,
often only a fraction of a class belongs to a feature and the
remaining part to other features. Consequently, the classes
have to be decomposed with respect to the features of a soft-
ware in order to generate classes that contain only desired
functionality.

We combine the runtime adaptation approach shown in
Section 2.1 with feature-oriented programming to allow a
user to add, remove and exchange feature modules and at
runtime. The basic elements of our feature-based runtime

adaptation approach are classes and wrappers (see Figure
6). Whereby, classes build the base and wrappers act as
refinements. Adding a feature at runtime requires to load all
base classes and wrappers it introduces. To apply the wrap-
pers the steps described in section 2.1 have to be processed.
Feature removing requires to remove all wrappers/classes of
the feature from the program. Feature exchange consists of
two steps: removing of the obsolete feature and application
the new one.

4. INTEROPERABILITY SOFTWARE
PRODUCT LINE

Using FOP we are currently implementing the Interop-
erability SPL. Services that play the role of an interface
between the server (where the service is located) and the
data source (usually an embedded device). In Figure 7 we
show an excerpt from our interoperability product line. The
Communication Protocol feature defines the currently sup-
ported protocols. If a user selects a protocol, e.g., feature
TCP, then we compose the code of the according protocol
to generate a tailor-made service. During the lifetime of the
many devices, it might be possible that new protocols are
needed. Reasons are new devices that must be integrated in
the logistic hub. This evolution of a software product line
can also be supported by our wrapper approach, e.g., changes
that cannot be foreseen when a service was generated can be
applied to running services. In addition to the required com-
munication protocols, the service has to consider operating
system dependent code (feature Operating System in Fig. 7)
as well as initialization methods for different hardware, e.g.,
bluetooth hardware.

The Functionality feature (see Fig. 7) implements the
data access and data input to achieve an abstraction from
the particular underlying system. While in our example the
Send and Receive features carry out only a simple API, in
real application scenarios these features are more precisely
refined. However, this refinement is dependent upon the ap-
plication. For example, in our logistic hub scenario, we have
to define subfeatures for Send in order to express commands
like discharge, charge, or transport of cargo. An example for
feature Receive is the current status of critical cargo, e.g.,
cooled food. The feature Non-functional Property is espe-
cially important if the service is used for embedded systems.
Because these devices have high resource restrictions, e.g.,
for processing power or bandwidth, we need to model code
that improves the mentioned non-functional properties. In
other words, we have to tailor the service to address the
constraint hardware which might effect the communication
speed, e.g., if data is too frequently queried from a wireless
embedded device, this device is fast out of power supply. The
measurement and configuration of non-functional properties
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Figure 8: Overview of the architecture.

are beyond the scope of this paper but were investigated
in [31].

4.1 Using the Interoperability SPL
In the following, we elaborate the whole architecture to

present how the used techniques are combined to achieve
the goals of enforcing the interoperability through runtime
adaption in a continuously changing environment while re-
ducing the development effort via software product lines. We
show schematically the static derivation of a new service (dis-
played as orange steps) and the reconfiguration of an existing
services (depicted as gray steps in Figure 8). Depending on
the specification of the devices that are connected to the
service provider, a stakeholder configures the interoperability
product line (Step 1 in Fig. 8). In the second step, the
configuration is mapped to the related feature modules that
are composed together in Step 3 in order to generate the new
tailored interface service. The service needs to be published
using the service provider allowing the communication with
the target devices.

Dynamic changes start also with Step 1 and 2. Changes
in the environment enforce the reconfiguration of an existing
service. All instances of used services can be stored with their
feature model configuration. Changes of this configuration
are mapped to feature modules which results in a list of
deltas that represent new feature modules or commands
to remove existing ones. Based on the describe wrapper
approach in Section 3.2, wrappers are generated in Step 3
(gray color) and adapted at service provider in Step 4 (gray
color) using the runtime adaption process stated in Section
2.1. With this technique the stability of the provided service
oriented architecture allow the cooperation of heterogeneous
systems that might fail during their lifetime. The reliability
of the whole system is improved even when devices needs to
be replaced. Using the software product line approach the
whole runtime adaption process can be automated via the
self (re-)configuration of an interoperability SPL.

5. RELATED WORK
Because of the advantages the ability for runtime program

adaptations comes a long with, many approaches and tools

to provide this ability have been developed in the recent
past. This is particularly true for the Java language. Various
approaches exist which solely use Java HotSwap for runtime
adaptation purposes, e.g., AspectWerkz [10, 9], Wool [30],
PROSE [23, 24], and JAsCo [34]. Like Java HotSwap itself,
they do not allow to change the schema of already loaded
classes.

However, researchers like Kniesel [21], Büchi [11], Hunt [18],
and Bettini [7, 8] recommend object wrappings to modify a
running program. What the approaches have in common is
that the wrapping itself cannot be applied to the running
program in an unanticipated way.

There are a number of languages and tools that support
static as well as dynamic composition. CaesarJ [4] supports
static composition based on collaborations and dynamic
deployment of aspects. Object Teams [17] use dynamic
composition of teams which represent features. Composition
is possible by using statically instantiated activation teams
which in turn activate other teams. Both approaches cannot
handle unanticipated program changes (changes for what the
application was not prepared before start) which is possible
with our approach.

With FeatureC++ Rosenmüller et al. [29] implemented an
approach to allow static and dynamic composition of features
with the same code base. We use a similar combination of
feature-oriented programming and runtime adaption. How-
ever, we can also change an already instantiated SPL which
is currently not supported in FeatureC++.

Services and product lines are used in several studies in
combination [33, 2]. For example, Trujillo et al. aim at
combining multiple, separately developed product lines in
a larger product line. A service oriented architecture is
used to represent each single SPL. These approaches do not
consider the automatic generation of services nor the runtime
reconfiguration as we do. Runtime adaptable or context-
aware services are introduced, e.g., by Bastida et al. [5].
The proposed context-aware services can be dynamically
composed in order to provide an optimal service. In contrast
to our approach, they do not consider software product lines
as a basis for variable code. Additionally, the composition
process cannot be done automatically which is possible with



our approach.

6. CONCLUSION
In this paper, we outlined an approach to generate services

based on software product line technology. These services
are used to enforce the interoperability of different systems
by abstracting the functionality from the system behind the
service. To enable this interoperability also in a running and
changing environment, we have to generate these services on
demand or adapt existing services at runtime. To enable the
needed automatic on demand adaption, we argue that the
software product line technology is suitable. We showed that
feature-oriented programming is an appropriate implemen-
tation technique to implement product lines in our scenario.
In future work, we will apply this technique with our already
developed runtime adaption approach and currently develop
a tool to enforce only correct runtime adaption. We plan to
automate the whole service derivation process including the
reconfiguration and runtime adaption.
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[24] A. Nicoară and G. Alonso. Dynamic aop with prose. In
Proceedings of International Workshop on Adaptive and
Self-Managing Enterprise Applications, pages 125–138,
2005.
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