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A Robustified MCMC Sampler –

Metropolis Hastings Simulator with Trimming

Veit Köppen1 and Hans-J. Lenz1

Institute of Production, Information Systems and OR, Freie Universität Berlin
Garystr. 21, 14195 Berlin, Germany, {koeppen;hjlenz}@wiwiss.fu-berlin.de

Abstract. One facet of data quality is the integrity of data. Most main busi-
ness and economic indicators suffer from statistical discrepancies. Such indicators
are modeled as random variables and related by a non-linear stochastic system of
equations. In order to check integrity of data with respect to a fully specified model
consisting of balance equations or equations due to definitions we need the joint
distribution of the right hand side of each single equation, and the distribution
of the related left hand side. As the Gaussian distribution is not closed under all
four arithmetic operations, we need MCMC simulation to determine the probability
distributions. In this paper we use the Metropolis-Hastings (MH) method. Various
distributions and moments of indicators are simulated. Using the MH method in
a classical way imprecise estimates may be caused by large measurement errors of
the variables. Consequently, robust estimation becomes mandatory.

Keywords: particle filter theory, Monte Carlo simulation, trimming,
Metropolis-Hastings algorithm

1 Introduction

Business indicators are part of many business reports. The same is true for
main economic indicators like Gross Domestic Product, inflation rate or rate
of unemployment as collected by the national account group of UNO. A vi-
tal question is whether such indicators contradict given balance equations or
simple definitions. Business processes are related to services and goods, and
deliver indicators which are measured. Of course, some integrated and aggre-
gated indicators may be corrupted by errors or must be estimated because
of being not directly observable. The same is true for economic indicators
which are characterized by an higher aggregation level. Therefore business
and economic indicators can be modeled as random variables. Of course, a
special case are crisp data where all variances are zero. The system of equa-
tions we consider is a non-linear system with arithmetic operators connect-
ing the variables in each equation. A classical system of business indicator is
the DuPont-System, which will be investigated here for the sake of simplic-
ity. Other systems may differ in the equations, but can be handled as well.
Markov Chain Monte Carlo (MCMC) simulation is a helpful tool to investi-
gate random variables if it is not possible to analytically determine the proper
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distribution functions. The Metropolis-Hastings (MH) algorithm can be used
to generate the probability distribution of random variables. This method
can be easily implemented for instance in R as we did, and also proves to
have reasonable computational performance.

2 The DuPont-system of business indicators

In 1919 the chemical company “DuPont” developed a system of business
indicators. The equation system is:

• profit = sales - cost
• profit margin = profit / sales
• return on investment (ROI) = profit / capital
• capital turnover = sales / capital.

The two types of variables are: (1) endogenous (explained or left hand) vari-
ables: profit, ROI, profit margin, and capital turnover; (2) exogenous (ex-
plaining or right hand) variables: sales, cost, and capital. In some applications
some of these variables may have missing values, or can only be estimated
or measured with large imprecision. Other variables have a restricted range
due to a share holder policy. We assume that all equations considered are
mathematical separable. Now, as there exist various ways to compute an in-
dicator, the question arises whether the single equation estimates are “model
consistent”, and how to compute a combined estimate in the sense of a full
information procedure. It is evident that the same problem carries over to
the main economic indicators of the national accounts system, i.e. UNO-SNA
2008, which have hundreds of variables.

3 Simulation

Computation of the corresponding joint probability function or marginal dis-
tributions of a simultaneous non-linear equation system is usually not a triv-
ial task. We use MCMC methods for the sake of generality. Therefore, the
very restrictive assumption of a Gaussian distribution family can be relaxed.
Because of special features of the MH algorithm any density function can
be used, cf. Hastings (1970), Chib (2004). This is specially true for mixed,
skewed and heavy tail distributions.

3.1 Extending the Metropolis Hastings algorithm

In the first phase of the MH algorithm the probability functions of the given
variables are determined. Furthermore, a proposal distribution is chosen for
each exogenous variable. To reduce the sampling cost the shape of proposal
should be as close as possible to the desired probability function. If this is
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not a priori possible, the sampling size has to be extended caused by the so
called burn-in phase. The size of the sample depends upon two parameters:
the number of particles and the number of repetitions. The second parameter
describes how many simulated means of particles per run will be used to
estimate the distribution function of the exogenous variables. In the second
phase all exogenous variables are simulated using MH algorithm. In the third
phase distributions of the endogenous variables are estimated using only those
equations where the corresponding exogenous variables are sampled. The
number of iterations for these two phases is kept as a parametric constant.
At the end of a MCMC simulation experiment a sample for all variables is
generated. Therefore estimates of moments or densities can be derived, tests
can be performed and given indicators can be checked.
Extended MH algorithm:

Experimental set-up: Fix the repetition size and the number of particles.

1. Initialize the exogenous variables with proposal distributions and target

probability functions.

2. Draw samples from exogenous variables using MH algorithm.

3. Derive distribution of endogenous variables from equation system.

4. Compute the means and variances of all variables.

5. If the repetition size is not reached, go to 2.

3.2 Evaluation of the algorithm

An evaluation of the extended MH algorithm requires to analyze whether or
not the quality of the simulation depends upon artifacts. We consider this
step as a kind of “calibration”. This primarily concerns non linearity due to
products and quotients as well as non-normality. The following estimators are
used for the mean and the variance of the simulated data, where T describes
the sample size of the simulated data:

µ̂ = 1/T
∑
T Xi σ̂2 = 1/(T − 1)

∑
T (Xi − µ̂)2

As estimators for the triangular distribution parameters we use:

l̂ = 1/T
∑

T min(Xi) p̂ = 1/T
∑
T µ̂ û = 1/T

∑
T max(Xi)

In all of our simulation experiments the simulation uses 1000 particles
(sampled values) per experiment and each experiment is repeated 5000 times.

3.3 Single linear equation with Gaussian and non-Gaussian
distributed variables

We use the single linear equation sales = profit+ cost. The exogenous ran-
dom variables are profit and cost, and the endogenous random variable is



762 Köppen, V. and Lenz, H.-J.

sales. Firstly, we consider the joint Gaussian distribution mainly for compar-
ison purposes. Computation of theoretical mean is done by E[X1 ± X2] =
E[X1] ± E[X2] and variance by V ar[X1 ± X2] = V ar[X1] + V ar[X2], of
course, under the independence assumption. The results for the theoretical
and simulated estimates are given in Table 1.

distribution µ σ2 µ̂ σ̂2 l p u l̂ p̂ û

(i) 100 17 100 17

(ii) 100 61.85 100 67.40 95 100 105 95.12 100 104.81

(iii) 100 67.45 99.62 67.42

Table 1. Results of endogenous variable in linear equation case.

(i) Gaussian distribution

We assume Gaussian probability functions and specify the parameters as
follows: profit ∼ N(20, 12) and cost ∼ N(80, 42). The proposal distribu-
tion is the Gaussian distribution with the same parameters, too. By running
the algorithm estimated means and standard deviations of the exogenous
variables do not differ from the desired levels. As the variables are Gaussian
distributed, the sum of two Gaussian random variables is also a Gaussian dis-
tribution. Thus a Kolmogorov-Smirnov (KS) goodness of fit test can be used
based on the simulated data of sales. The H0-hypothesis of all tests is that
the simulated data is corresponding to a Gaussian distribution with mean
100 and variance 17. Mean of p-values from simulations delivers p ≈ 50.4%.
We infer that the simulation at least for uncorrelated Gaussian distributed
variables in the linear case is a good choice.

(ii) Triangular distribution

The next example uses the same equation with a triangular probability
function. Profit is distributed in the interval [19, 21] with peak (mode) at 20.
Cost are distributed in the interval [76, 84] with peak at 80. The proposal
distributions are now a uniform distribution of profit in the interval [19,
21] and of cost in the interval [76, 84]. Testing of the simulated exogenous
variables against the theoretical distribution the p-value of a two-sided KS
test has a value of about 0.

Fig. 1 left upper part makes clear that simulations are insufficient near
to the upper and lower bounds. The simulated densities and distribution
functions are compared with their theoretical functions in Fig. 1.

(iii) Contaminated Gaussian distributions

In our third example profit and cost are now corresponding to an ǫ-
contaminated Gaussian distribution. This probability function is described
by:

(1− ǫ) ·N(µ1, σ
2
1) + ǫ ·N(µ2, σ

2
2) with ǫ ∈ [0, 1]. (1)
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Fig. 1. Simulated and theoretical triangular distributions.

profit: µ1 = 21 σ2
1 = 2 µ2 = 16 σ2

2 = 1 ǫ = 0.1
cost: µ1 = 75 σ2

1 = 4 µ2 = 90 σ2
2 = 3 ǫ = 0.3

Our proposal distribution is a Gaussian distribution and the starting val-
ues for the MH algorithm are uniformly distributed in the interval [10, 30] for
profit and [70, 100] for cost. The theoretical value of sales is well supported
by the simulated variance as easily seen in Tab. 1. The KS test can not be
applied, because the distribution function of the sum is not known.

As a first conclusion we note that simulation of a linear equation sys-
tem using the MH algorithm leads to good results not only for endogenous
variables, but also for exogenous variables. Some problems may arise if the
variance is very large, since it affects the simulated data. A proposal of tack-
ling this problem by robustification is given in the last section.

3.4 Single nonlinear equation with Gaussian and non-Gaussian
distributed variables

As an example of a non-linear equation we take from the DuPont system:
profit = ROI ·capital. The exogenous variables are ROI and capital. Profit
is here the endogenous variable. The theoretical estimates for the endogenous
variable can be computed under independence assumption as (Mood (1973)):

E[X1 ·X2] = E[X1] · E[X2],
V ar[X1 ·X2] ≈ E2[X1] · V ar[X2] + E2[X2] · V ar[X1] + V ar[X1] · V ar[X2]

The theoretical and simulated results for the endogenous variable profit are
shown in Table 2.
(i) Gaussian distribution

In the case of a Gaussian probability function the variables are distributed
as: ROI ∼ N(0.25, 0.0252) and capital ∼ N(80, 0.42). To reduce computation
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distribution µ σ2 µ̂ σ̂2 l p u l̂ p̂ û

(i) 20 5.01 19.99 4.99

(ii) 20 0.275 20 0.215 18.24 20 21.84 18.29 20 21.77

(iii) 20 6.19 20.03 6.78

Table 2. Results for endogenous variable in case of a non-linear equation.

effort the proposal distributions are Gaussian distributions with same param-
eters. A KS test for all simulated particles per run has a mean of p = 0. The
underlying distribution is a normal distribution with the theoretical mean
and variance. Because of the zero values of these two-sided tests, the H0-
hypothesis that the simulated data have a Gaussian distribution must be
rejected.
(ii) Triangular distribution

In case of a triangular distribution, ROI is symmetrically distributed in
the interval [0.24, 0.26] and capital is also symmetrically distributed, however,
in the interval [76, 84]. The proposal distribution is a uniform distribution.
As before the simulated data differs clearly from the theoretical distribution
at the boundaries. If the exogenous variables are described by a triangular
probability function, the simulated data for the endogenous variable should
follow a triangular distribution. The two-sided KS test has a mean in the p-
values of 0. Thus the Hypothesis, that profit is described by a symmetrically
triangular distribution in the interval [18.24, 21.84] is rejected.
(iii) Contaminated Gaussian distribution

In the next example variables ROI and capital are distributed as a two-
peak Gaussian which is described by equation 1:

ROI: µ1 = 0.21 σ2
1 = 0.052 µ2 = 0.31 σ2

2 = 0.062 ǫ = 0.4
capital: µ1 = 71 σ2

1 = 102 µ2 = 86 σ2
2 = 82 ǫ = 0.6

The proposal distribution for each variable is a Gaussian distribution.
Due to the unknown distribution function of the product a KS test can not
be applied.

4 Variance-reduction techniques by trimming

The problem of too large deviations caused by MCMC simulation can be
reduced by a robust estimation procedure. To achieve robustness one possible
solution is to eliminate the extreme values at both ends from the sample. A
solution is the γ-trim mean and γ-trim variance, for instance cf. Büning
(1991). This implies to drop the γ ·R upper and lower sampled values, where
0 ≤ γ < 0.5. The estimators change to:

µ̂γ = 1
R(1−2·γ)

R(1−γ)∑
i=γ·R+1

Xi σ̂2 = 1
R(1−2·γ)−1

R(1−γ)∑
i=γ·R+1

(Xi − µ̂γ).
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Because the sample size is reduced, sampling should be extended. The
amount of post sampled particles depends on the target sampled size and the
γ-trim. The relationship can be described by: sampling particles = demanded
particles / (1 − 2 · γ). The γ parameter is dependent on the variance of the
variable. If the variance is high, γ should be increased. On the other hand,
the parameter should be set to 0 for a low variance. This will reduce the
sampling effort and, consequently, speed-up the algorithm.

5 Simulation of a non-linear stochastic system of
equations

The following example illustrates, that not only a single equation but a full
system of equations can be simulated by our algorithm with trimming. The
exogenous variables are capital, cost and sales and they are distributed as
follows: capital ∼ N(80, 42), cost ∼ N(80, 42) and sales ∼ N(100, 52). To
keep the simulation size small, the proposal distribution for the endogenous
variables is also a Gaussian distribution. For simulation the DuPont system
is used. Fig. 2 shows the distributions of mean and standard deviation of
all variables. The sampling is done with γ equals to 0 (no trimming). Fig. 3
shows the results for γ-trimmed estimation. The value of γ is set to 0.3. The
shrinkage of the spread of all distributions becomes evident, cf. Fig. 2 and 3.
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Fig. 2. Simulated means and standard deviations of the DuPont system (γ = 0).

6 Results and future work

We showed that simulation based upon the MH algorithm is a sound method
to simulate simultaneous equation systems. The inputs are the system of



766 Köppen, V. and Lenz, H.-J.

mean

capital & costs

79.6 80.2

0.0
0.5

1.0
1.5

2.0
2.5

3.0

standard deviation

capital & costs

2.5 3.5

0
1

2
3

mean

transaction volume

99.4 100.2

0.0
0.5

1.0
1.5

2.0

standard deviation

transaction volume

3.5 4.5

0.0
0.5

1.0
1.5

2.0

mean

profit

19.5 20.5

0.0
0.5

1.0
1.5

standard deviation

profit

4.0 5.5 7.0

0.0
0.5

1.0
1.5

2.0

mean

ROI

0.240 0.260

0
20

40
60

80
10

0

standard deviation

ROI

0.010 0.025

0
50

10
0

15
0

20
0

25
0

mean

profit margin

1.240 1.260

0
20

40
60

80
10

0

standard deviation

profit margin

0.010 0.025

0
50

10
0

15
0

20
0

25
0

mean

capital turnover

0.195 0.205

0
50

10
0

15
0

20
0

standard deviation

capital turnover

0.006 0.016

0
10

0
20

0
30

0
40

0

Fig. 3. Simulated means and standard deviations of γ-trimmed DuPont System
(γ = 0.3.)

equations and the probability functions of the exogenous variables. All other
variables can be simulated. If the sampling size is adequate, the sampling
distributions are similar to the theoretical distributions. Most of those theo-
retical distributions are not analytically derivable, thus sampling is the only
way to solve such systems. The improvement of using random variables in-
stead of crisp quantities for main business and economic indicator systems is
obvious. The often published ”statistical discrepancies” related to variables
become crucial if measurement errors are effective.

The results of our simulation study of non-linear equation systems are:
(1) MH algorithm is a very flexible method to sample from any joint prob-
ability function. (2) A critical drawback is the sampling from a probability
density function defined on a finite domain. (3) For large variances of variables
the classic MH algorithm should be modified to a MH with trimming. The
simulation size must accordingly be adapted. The pay-offs for increased simu-
lation are improved estimators. However, further problems exist like missing
values as well as stochastic dependencies between variables.
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