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Summary. Data validation for models with errors in the variables is an 
important aspect for supporting decision making. In this context, several 
concepts have been employed. In this paper, we compare a possiblistic and 
a probabilistic approach. The DuPont Business model is chosen as an ex-
ample for a controlling model with errors. Although the FuzzyCalc algo-
rithm, representing the possiblistic approach, and the SamPro algorithm, 
representing the probabilistic approach, use different calculi, their results 
are quite similar, proving themselves suitable for data validation. 
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Introduction 

With ever growing market demand, business management tools and tech-
niques for decision making are becoming increasingly important. Business 
decisions are based on business figures. Presently, such business figures 
are being handled as crisp data, despite the fact that they are usually 
counted, estimated or measured. However, sampling, estimation, counting 
and measurement errors should be taken into consideration. This implies 
that the recorded figures need to be validated, since the data may not 
match a given numeric model chosen for data analysis. 



There exist several concepts for data validation. We will compare two dif-
ferent approaches that take the aforementioned aspects into account: A 
probabilistic approach, which is represented by a simulation algorithm us-
ing the statistical programming language R, and a possibilistic approach, 
based on Fuzzy-Set-Theory. 
Both approaches use different calculi, however they are used for data vali-
dation. [Dubois, Prade 2006] show that possibility delivers an upper bound 
for probability. They also show the transformations from possibility to 
probability. In our comparative study we are interested in the divergence 
of these approaches for numerical data validation. 
We consider a model class M defined by numeric variables which are re-
lated by the arithmetic operators +, -, * and /. Note that multiplication and 
division lead to non-linear operations. We assume that for all M∈m , the 
variables in the related equations are separable, i.e. each equation can be 
uniquely solved for each variable. 

A Possibilistic Approach 

Fuzzy set theory is used to solve an algebraic equation system given expert 
knowledge. FuzzyCalc [Lenz, Müller 2000; Müller, Lenz 2003], an Excel 
Add-In is employed for this purpose.  
Before presenting the experimental results, let us refer to the theoretical 
background of Fuzzy logic, cf. [Zadeh 1965]: A membership function 
( )xµ  represents a fuzzy variable (Fig. 1).  

 
Fig. 1. Fuzzy-Set A 



A variable may be represented by more than one membership function, if it 
occurs in more than one equation. In such a case, each pair of membership 
functions involved is combined and a renormalised. 
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The following algorithm is used to solve non-linear fuzzy equation sys-
tems. It is implemented in FuzzyCalc. 

FuzzyCalc Algorithm 
Input: one observation per fuzzy variable, fuzzy equation system, fully 

specified membership functions (missing values allowed) 
Output: adjusted fuzzy sets (variables) 
Repeat 
 For all equations 
  For all variables in current equation 
   Resolve (separation step) equation for each variable  
   Compute (folding) new Fuzzy set using arithmetic as 

   defined by Zadeh’s extension principle 
  End for 
 End for 
 For all fuzzy variables 
  Compute the intersections 
  If an intersection is empty then notify user: “System is  

  inconsistent!” 
  Else re-normalise the corresponding membership function 
 End for 
Until no changes for all fuzzy sets occur 
End algorithm. 

 
A fuzzy variable should have a restricted membership function. Interpret-
ing a membership function with more than one peak is not a trivial task, 
therefore only convex membership functions are considered. 
FuzzyCalc has a number of useful properties. Several of these properties 
are identical with properties of the probability theory under a Gaussian re-
gime. These properties are: 
• supports have a monotone contraction, when fuzzy variables are arith-

metically combined 
• the peak positions of adjusted fuzzy variables fulfil the equation system, 
• invariance of adjusted data, 
• shift of peak positions(values) dependent on length of support 
• shift depends on support. 



We illustrate the output of FuzzyCalc for one out of seven variables, linked 
by four equations, i.e. return on investment (ROI). 
 

 
Fig. 2. FuzzyCalc results for ROI  

SamPro – a MCMC algorithm 

SamPro algorithm, [Köppen, Lenz 2005], can be applied for: (1) estimat-
ing missing values of variables and (2) improving the estimations of vari-
ables in case of an over-determined equation system.  
Parametric probability distributions closed under all arithmetic operations 
do not exist. Therefore, we use the Metropolis-Hastings algorithm [Hast-
ings 1970] in order to simulate stochastic equation systems. Interestingly 
enough, this algorithm does not need to know the normalisation factor of a 
candidate density function.  
It should be noted, that candidate density functions (modulo normalisation) 
have to fulfil the L2-norm. A sufficient restriction is that the function is 
bounded. Obviously, MCMC sampling might introduce errors. However, 
increasing the number of simulation runs, these errors will be reduced ac-
cording to the law of large numbers of probability theory. 



The algorithm is given by: 
SamPro-Algorithm 
Input: a stochastic equation system, observation vector x, z with one  

    observation per variable  (missing values allowed) 
Output: estimates for all variables 

resolve (set LHS1 ≡ RHS) for each variable in all equations 
simulate samples for RHS 
compute LHS by sampling from the joint density function of  

 all RHS variables 
estimate quantiles minmax ,qq  for each variable with  

 { }  variableafor  Quantiles-maxmax α=q  and,  

 ( ){ }  variableafor  Quantiles-1minmin α−=q  

compute the distribution of xzf̂  restricted by the subspace x-z = 0 
End algorithm. 

SamPro has the following properties: 
• Shift in mean 
• Shift is dependent on variance, 
• Variance-reduction, 
• Invariance of variables with zero variance. 

Fig. 3 shows the result of return on investment (ROI) using the SamPro –
simulation from case one with Gaussian distributions. 

 
Fig. 3. SamPro results for ROI computed from a seven variable and four equation 
model 
                                                      
1 z = x1 + x2 then z is left hand side variable (LHS) and the x’s are right hand side 

variables (RHS). 



Comparison of the approaches 

We now compare both approaches by using the DuPont Business Model. 

DuPont Business Model 

The DuPont model consists of seven variables and four equations. The 
model graph is depicted in Fig. 4. 
The structural equation system is given by: 
• costsprofitn volumetransactio +=  
• capital/n volumetransactio turnovercapital =  
• n volumetransactio/profitmarginprofit =  
• capital/profit volumeinvestmenton return =  
 

 

Fig. 4. Model graph of the DuPont System 

We now present the results of our comparative study. 
We developed 15 cases of different prior knowledge in the variables of the 
DuPont model. In all cases the results of FuzzyCalc and SamPro are very 
similar. Therefore we present here only one, but representing case. 
Let the following apriori information be available: 
Costs and capital turnover are unknown. In the possibilistic approach, all 
variables are represented by a triangular membership function, unless the 
variables have fixed values. In SamPro, a multivariate Gaussian distribu-
tion is initially assumed. To better evaluate its performance, we also use a 



triangle function. In our experimental evaluation, FuzzyCalc, always uses 
a triangle function. Table 1 shows the results for two different cases. In 
case one, a higher variance is used, whereas in case two the variance is 
relative smaller. 
Both algorithms, FuzzyCalc and SamPro, exhibit similar behaviours. The 
data sets are consistent. Consequently, we are able to reduce the support 
using the fuzzy logic approach and to decrease the standard deviations of 
the probability distributions involved. The differences in the values are 
negligible. 

Table 1. Sampling and estimation results for the DuPont system 

 

Conclusion 

The results of the possibilistic and the probabilistic approaches are quite 
similar. Both FuzzyCalc and SamPro test whether or not the given data set 
is a possible solution of the corresponding equation system. Given better 
quality prior knowledge, both algorithms improve the accuracy of the 
given data. Thus, a variance reduction as well as a shift in level is 
achieved, whereas at the same time the adjusted data fulfils the equation 
system. While the SamPro algorithm is exact with respect to the selected 
probability distributions despite the sampling errors, the FuzzyCalc ap-
proach is restricted by the specifications of the membership functions. 
In our study we did not consider multidimensional density functions that 
include dependencies in the variables due to the fact that this cannot be 
implemented in FuzzyCalc. We expect increased accuracy for the SamPro 
algorithm by using multidimensional density functions. 
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