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Abstract
In this paper, we combine data generated by Monte-Carlo simula-

tion, which is based on prior knowledge about a fully specified non-
linear, stochastic balance equation system with noisy measurements.
This two-step estimation procedure strongly improves the precision of
the estimation of unobservable quantities of such models.
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1 Introduction

We consider non-linear equation systems with measurement errors in the variables.
The variables are simply related by arithmetic operators; however, multiplication
and addition imply non-linearity. Various techniques, like general least squares,
fuzzy equation solver or Monte-Carlo simulation techniques can be applied to es-
timate the unobservable variables (”unknown system parameters”), cf. [3, 4]. The
Metropolis-Hastings-Algorithm (MH Algorithm) has been shown to be an efficient
algorithm to sample from any density function [2, 1]. We introduce a specially
tailored algorithm, which fuses the information from the simulation and measure-
ments in order to improve the precision of the estimators of the unobservable
variables.

2 Simulation

Simulation of a non-linear stochastic equation system assists data validating and
cleansing given a fully specified model of a system. The solution set can be used to
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decide whether or not the measured data can be generated from the model, under
the premises, that the underlying model is correct. As most of the equations
represent balance equations or definitions, this assumption is rather conclusive.

2.1 System Model

Let ξ = (ξ1, . . . , ξp) be a vector of true but unobservable state variables. The
vectors x = ξ + v and z = H (ξ) + w can be observed, whereas the errors ν in the
variables and the errors in the model w with dimension q are unobservable (latent),

and distributed according to u =
[

v
w

]
∼ F (·), where F is the corresponding

distribution function, for example a Gaussian distribution N (0,Σuu). The balance
equation model is defined by ζ = H(ξ). We make the assumptions that u⊥v, H
is measurable, and q 6 p, cf. [3].

The density functions fz, fx of the vectors z, x are given. A necessary condition
about the density functions is, that they must fulfil the Lebesgue L2 norm, i.e.√∫

|fx (x)|2 dx < ∞. In the following it will become clear, that this is mandatory,
because the used transformation of the joint density function should lead to a
density function again and should have a well-defined Lebesgue integral as well. A
sufficient condition is that the density function fx is bounded. The same holds true
for fz. Alternatively, the model can be described by a model graph G = (N,A),
where the set N of nodes represents the set of unobservable or observable variables
and the set A represents relations, cf. Fig. 1.

Figure 1. Model Graph G

In Figure 1 the model graph of ζ3 = f3 (ξ1, ξ2) is shown. In this case ζ3

is a LHS variable, ξ1 and ξ2 are RHS variables. We study equation systems
which are separable, i.e. there exist mappings f−1

1 ,f−1
2 , such thatξ1 = f−1

1 (ξ2, ξ3),
ξ2 = f−1

2 (ξ1, ξ3).

Our objective is to estimate the vectors ξ and ζ, given data (x, z), and to make
inferences about relations involved. To illustrate our approach, we present below
the well-known DuPont system. It consists of four equations, which includes seven
variables. Note, that all variables are noisy of various degrees. Of course, error-free
measurements are a rather special case of our assumptions.
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The DuPont System is described below:

P = TV − CO
ROI = P / CA
PM = P / TV
CT = TV / CA

(1)
(2)
(3)
(4)

profit = P transaction volume = TV
costs = CO capital turnover = CT
capital = CA return on investment = ROI

profit margin = PM
Evidently, the DuPont system is separable. For example, equation (1) can be

rearranged as TV = P + CO or CO = TV − P .

2.2 Sampling

In the first step we are sampling from each distribution. The MHA can be used
to generate samples from any density function involved.

Algorithm MH
input: f target function,

q (·, ·) transition kernel
t iteration index; T maximum number of iterations

output: s statistic, from which the estimates f̂ are derived

1. initialise s0 and set t := 1

2. repeat
incr(t)
sample ϕ from q (θt−1, ·)
evaluate α (st−1, ϕ) := min

(
1, f(ϕ)·q(ϕ,st−1)

f(st−1)·q(st−1,ϕ)

)
,

if α accepted then st := ϕ else st := st−1.

3. until t = T .

In a second step, the full equation system is used in order to simulate the (joint)
distribution of the vector z. This step produces an estimate of the unobservable
variables.

2.3 Consistency Check

When n > 1 estimates exist for a given variable, it can be checked whether or not
the measurement fulfils the balance equation system.
If the variable shows up in n 6 q equations, α-quantiles for all n simulated density
functions of a variable are computed.
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Figure 2. α-quantile

If the maximum of the lower quantilesmax
{
q1, q2, . . . , qn

}
= qmaxis greater

than the minimum of the upper quantilesmin {q1, q2, . . . , qn} = qmin, the data set
should be marked as inconsistent. Otherwise go to the next step (”projection ”).

2.4 Projection and Distribution on Subspace

If at least one simulated distribution and a prior distribution per variable is at
hand, the two-dimensional space range (xobs) × range (ξsim) is projected on the
subspace xobs − ξsim = 0. We assume that the samples are independently gen-
erated. Therefore the joint distribution function can be easily derived. This as-
sumption is plausible, since the simulation produces the estimates from different
equations. The range of interest of the projection is given by Iq =

[
qmin, qmax

]
.

The joint distribution is given by:
f̂

x
∧
ξ
(y, y) = c f̂x (y) · f̂∧

ξ
(y) ∀y ∈ Iq, c ∈R+. (5)

c ∈R+ is a normalising constant. As each of the density functions in (5)
are assumed to be L2 normal, the product has again a Lebesgue integral and
normalisation is feasible.

3 Sampling and Projection - Algorithm SamPro

Input: model G = (N,A), fx, fz and data set(x, z)
Output:

(
ξ̂, Σ̂uu

)
begin

1. resolve (≡ set LHS & RHS) for all variables of each equation

2. computef̂xby sampling from the joint density of all RHS
variables

3. derive the joint distribution f̂z for z

4. estimate quantiles qmax, qmin

5. compute the distribution f̂xz on the subspace x− z = 0

end
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4 An Example – The DuPont System

In our example below, 5 out of seven random variables are fully specified by a
Gaussian density function coined N

(
µ, σ2

)
:

•P ∼ N
(
30, 52

)
•CA ∼ N

(
80, 202

) •TV ∼ N
(
100, 252

)
•PM ∼ N

(
0.25, 0.12

) •ROI ∼ N
(
0.4, 0.22

)

Costs and capital turnover can be calculated by the equation system (1) –
(4). Furthermore, profit, transaction volume and profit margin can be computed
by the equation system. The densities derived by SamPro are shown in figure 3.
Note the increase of accuracy due to reduced variances of estimates relative to the
measurement variances.

In figure 4 the densities of profit simulated by SamPro and the observed density
are shown. Variance reduction and a shift in the mean are evident.

Figure 3. Simulated densities of four variables of the DuPont System
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Figure 4. Observed and simulated profit density functions

5 Conclusion

The algorithm SamPro supports an evaluation of stochastic non-linear balance
equation systems, which are equally important for business and science. Informa-
tion fusion leads to significantly improved estimates.
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