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Abstract:

Operative model-based Controlling checks the integrity of business figures, L.e. correctness with respect to reality.
This data results from the Business processes managed by various departments. The fgures are represented as
random variables and related by a non-linear system of equations. The random variables in each equation are
connected by dyadic arithmetic aperators like multiplication and addition. Business figures are normally not crisp,
but random due to measurement errors. Consequently, computation of the corresponding probability distributions is
wsually not a trivial task.

In this paper ¢ probability distribution function type is proposed which is not limited to @ Gaussian distribution; any
computable target probability function can be wsed. As there does not exist a parametric class of probability
functions which is closed under folding by an arithmetic operation, MC-simulation is used. I this paper we study
the Metropolis-Hastings (MH) method. Other Markov Chain Monte Carlo (MCMC) methods are not equally
effective and easily implemented. Starting point of the simudation is the distribution of the random variables
corresponding to some given date sets. The business figures of interest are simulated from a so-called target
function. The distribution of interest can be estimated by simulation from the target function. The results may differ
due to different target functions. The efficiency of different functions is examined. From a simudated data set any
moment of interest like the mean or standard deviation or higher moments can be computed. Different distributions
and their moments are analyzed. We are interested in efficient estimation. Inoreasing the variances of distributions
leads to imprecise results. Therefore adaptive statistical methods are applied. Also a change of the distribution type
may lead to improper simudations. We found out, that the ME method must be adapted for functions on a finite
interval Imprecision due to sampling and estimation must be kept as small as possible. [ the target function has a
large variance, the simudation method tends to become unreliable. Outliers may show-up. Consequently, robust
estimation becomes mandatory. The kind of trimming is not too much influential, but more data has to be simulated
in arder to compensate the loss of data. There exists a trade-of between ¢ computational slow-down and improved
results.

The great advantage of using the Metropolis-Hastings algorithm is that irrespective from the input values, the
sinudated data jollows exactly the function of interest. In addition to that, the estimators for business figures are
very precise. The given data can be tested against the simudated data. A hypothesis test can be run, enabling the
controller to either aocept or reject the data. The power of the hypothesis test is sufficient given an olevel This
implies that the risk of @ wrong decision in case of hon-consistent data is small. So simudation supports aperative
controlling based on models and contributes to improve the precision of business figures.
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1. Introducton

Business figures found in many business reports or in Balanced Score Cards describe companies in a very
comprehensive way. Many decisions are supported by those figures. A vital question is: Can the management be
sure, that the figures are correct?

Most of the business processes produce figures which are measured. Of course, figures may be corrupted by errors.
So the business figures can be interpreted as random variables. The system of equations which is related to the
figures is a non-linear system with dyadic arithmetic operators connecting the variables in each equation. We
assume that these equations are separable, i.e. each variable in each equation can be uniquely separated from the
remaining set of variables. A classical system of business figure is the DuPont-System, which will be investigated
here. Other systems may differ in the equations, but can be handled as well, i.e. Business Score Cards.

Markov Chain Monte Carlo simulation is a helpful tool to investigate random variables even if it is not possible to
calculate the distribution function. The Metropolis-Hastings algorithm can be used to generate the probability
distribution of random wvariables. This method can be easily implemented for instance in SAS, SPlus or R, and also
proves to have good performance.

2. The DuPont-System of Business Indicators

In 1919 the chemical “DuPont” developed a system of business figures that became known as “ROI-Tree”. It has a
structure with the retum on investment as the root node. It consists of seven variables and four equations.

| return on investrment |

capital turnover

costs | transaction volure |

Figure 1: ROI-Graph of the “DuPont”-schema

The equation system is:

profit = transaction volume — costs

return on investment = profit | capital
profit margin =  prafit | trapsaction volume
capital  turnover = transaction volume [ capital

Types of variables are:
- endogenous variables:
o profit
O refurn on investment
o profit margin
o capital tumover
- exogenous variables:
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o transaction volume

o costs

o capital
In some applications some variable can only be estimated or measured with large precision. Other variables have a
restricted range due to instructions or guidelines, e.g. the company’s profit should be in a fixed interval. All of the
given equations considered are separable, and that is why each variable can uniquely be isolated and form the left
hand side of an equation. For instance, the profit can be calculated by

profit = profit margin ¥ transaction volums

3. Simulation

Due to measurement errors or data recording problems business figures are generally considered to be not crisp.
Sampled data can be used to determine or specify distribution functions, but this slows down any computing
performance. Distribution functions can also be specified by domain experts, but should be validated before being
used. In the no data case one has to trust in the expert knowledge and prior information available.

Computation of the corresponding probability function is usually not a trivial task. We use Markov Chain Monte
Carlo Methods. Therefore the distribution functions are not limited to the Gaussian distribution family. Because of
interests of the flexibility and efficiency of the Metropolis-Hastings algorithm any distribution function can be used,
cf. Hastings (1970), Chib (2004).

3.1. Extending the Metropolis-Hastings Algorithm

In the initialization phase the probability functions of the given variables are determined. Furthermore a proposal
distribution is chosen for each exogenous variable. These distributions should need low computational efforts,
because random samples have to be generated from that proposal distribution. To reduce the sampling costs the
shape of proposal should be as close as possible to the desired probability function. If this is not possible, the
sampling size has to be extended caused by the so called burn-in phase. The size of the sample depends upon two
parameters are used: the number of particles for the Metropolis-Hastings algorithm and the number of repetition.
The second parameter describes how many simulated means of particles per run will be used to estimate the
distribution function of the exogenous variables.

In the second phase of this extended Meiropolis-Hastings algorithm all exogenous variables are simulated. This is
done is like in the Metropolis-Hastings algorithm.

In the third phase distributions of the endogenous variables are estimated using the equations of the corresponding
sampled exogenous variables.

The number of iterations for these two phases is kept as parametric constant.

At the end a sample for all variables is given. So tests can be performed and given figures can be checked. In order
to cut all the particles from the simulated data, the first means should not be a part of the analysis. The amount of
data that has to be cut out depends on the proposal distribution.

The extended MH algorithm:
Fix the repetition size and the number of particles.
Exogenous variables are those with a known probability function.
Endogenous variables are described by the DuPont-system.
1. [Initialize the given exogenous variables with proposal distributions and target probability functions.
Draw sample from the exogenous variables by using standard Metropolis-Hastings algorithm.
3. Derive the distribution of the endogenous variables from the equation-system.
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4.  Compute the means and variances of endogenous and exogenous variables and store them.
5. Ifthe repetition size is not reached, go to 2.

The stored means and variances differ from run to run due to sampling errors.

3.2. Evaluation of the Algorithm

An evaluation of the extended MH algorithm requires to check whether or not the quality so simulation depends
upon possible operators. The arithmetic operations are addition, subtraction, multiplication and division. Moreover
different probability functions should also be considered: Gaussian distribution, triangle distribution and a Gaunssian
distribution with contamination.

The Gaussian distribution is frequently used in practice and research. It allows to use the mathematical calculus. The
triangle distribution is also commonly used in practice and is a distribution function defined on a closed interval.

To check the results from the simulation the mean can be calculated or approximated by the following equations, cf
Moods et al (1974). The underlying assumption is that the random variables X; (i = 1,2) are identically and
independently distributed. It follows for the means (expected values):

Elx, + x,]= E[x; |+ E[x, ] (1)
E[x,-2x,]= ELxy ] 2[x] (2)
B[x, /x|~ Elx VX |+ (Blx | ver Y 2L (3)
The variances can be approximated by:
Var|x, + 7, |=var 1, |+ var| s | @
varl X, X,|= B} X, | var| X, |+ B X, | verl X, |+ ver| X, | var| X )
varlxy /1, |~ el 2l I - (VW[Xl]/EE[Xl]JFVW[XzVEE[Xz]) (6)

The following estimators are used for the mean and the variance of the simulated data:
n - PRV
=T x, &1 =T -1 (%, - it)
Mean-Estimator: T Variance-Estim ator: T
In this case T describes the sampled size of the simulated data.

Now some examples will be discussed.

3.2.1. Folding of two distributions under addition

As an example of addition we use

transaction volume = profit + costs
(i) Gaussian distribution
The exogenous random variables are profit and costs, and the endogenous random variable is transaction volume.
We specify the assumed Gaussian probability functions as follows:

profit~N(201) ong  costs ~ N(80,42)_

To reduce simulation effort, the proposal distribution is the Gaussian distribution with the same parameters, too.
This reduces the costs of simulation and does not alter the results of simulation.
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By running the algorithm with 1000 particles (sampled values) per experiment and 5000 repetitions of experiments
the estimated means and standard deviations of the exogenous variables do not differ from the desired levels. The

= 100

. . . Y . . ~ 2
simulated data for the transaction volume has an estimated mean # and an estimated variance o =17,

Using equation (1) to calculate the mean of the transaction volume leads to # =100 Equation {4} leads to a

theoretical variance G~ =17

As the exogenous variables are Gaussian distributed, the sum of two Gaussian random variables is also a Gaussian
distribution. Thus a Kolmogorov-Smimov goodness of fit test can be used based on the simulated data of the
transaction volume. The Hg-hypothesis of all tests is that the simulated data is corresponding to a Gaussian
distribution with mean 100 and variance 17. This test should be started directly after the Metropolis-Hastings phase.
A 5000 times iteration follows. The p-values produced from each iteration are stored.

The mean of the p-values from the simulations delivers P#=504%  The variance of the p-Values of the

2 s
Kolmogorov-Smirnov Goodness of fit tests is °F ® 29%). The minimum is 2.7% and the maximum is 100%. In
this way it can be safely derived, that the simulation for a Gaussian probability function with the plus-operator is a

good choice.

(ii) Triangle distribution
The next example uses the same equation with a triangle probability function. Profit is distributed in the interval [19,
21] with peak {(mode) at 20. Costs are distributed in the interval [76, 84] with peak at 80. The proposal distributions
are now a uniform distribution of profit in the interval [19, 21] and of costs in the interval [76, 84].
The estimators for the triangle distribution parameters are:
I=y1y min(x,)
T

lower bound: .

P :1/3’22&:'
T and

@=1r max(x,)
upper bound T

The algorithm is again executed with the same simulation experiment parameters as in the case of (i). The estimated
means and the lower and upper bounds of the exogenous variables do not differ much from the desired functions.

peak

The simulated lower bound / has a mean avg@)z 95.88 , but a minimum min@)z 93.12 The simulated upper
bound of the transaction volume has a mean avg(ﬁ): 104.13 44 a maximum maX(ﬁ)z 104.81  The mean of the

simulated endogenous variable is “¥& () =100 )

The theoretical results of the distribution should be in the interval of [95; 105]. So the minimum for the lower bound
and the maximum for the upper bound are the better descriptors for the theoretical distribution. Testing of the
simulated exogenous variables against the theoretical distribution the p-value of a two-sided Kolmogorov-Smirnov
test has a value of about 0.

The p-value of the Kolmogorov-Smirnov test is derived as in the section of Gaussian distribution.

Figure 2 makes clear that the simulation in the regions of the upper and lower bounds are bad. The simulated density
and distribution function are compared with their expected functions in figure 2.
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Figure 2: Simulated and exp ected triangle function distributions

(iii) Contaminated Gaussian distribution
In our third example profit and costs are now corresponding to a 2-peak-Gaussian distribution. This probability
function is described by:

(1—5)'”(“1,512)+5'N(“2’522) with &€ [01], (7

Forthis example, the profit distribution has the param eters:
2 2
=21 o =2 ;=16 0" =1 es=01
and the probability distribution of costs has the parameters:
2 2
=75 o =4 u;=90 &,"=3 j;y£=03.

Our proposal distribution is a Gaussian distribution and the starting values for the Metropolis-Hastings algorithm are
uniformly distributed in the interval [10, 30] for profit and [70, 100] for costs.
The simulation again runs with 1000 particles and a repetition rate of 5000. The simulated mean of profit is

H progit =20.32 and the simulated mean of costs is Hcgsts =79.10, Using equation (1) leads to the value of

H= 99'62. The simulated mean of transaction volume is #t=99.62 .

=251

The standard deviation of profit is T progit and of costs Cecosts = 7-82, Equation (4) therefore leads to the

theoretical value of O’ =67.45 variance which is supported by simulated variance of 6% =6742. The
Kolmogorov-Smirnoff Goodness of fit test could not be applied to the data, because the distribution function of the
result is not known and can not be derived. Nevertheless a simulated distribution of the equation is shown in figure
3. The 2-peak-Gausian distribution can very easily been detected in all exogenous variables, i.e. profit and costs.
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Figure 3: Simulated distribution of transaction volume, profit and costs from a 2-peak Gaussian probability
function

T3

For the operation equivalent results can be derived. Therefore we skip this topic. As a first conclusion,
simulation using the Metropolis-Hastings algorithm leads to good results not only in the endogenous variables, but
also in the exogenous variables under all linear operations. Some problems can arise if the variance is very large,
since the simulated data are affected. A proposal of tackling this problem is given in the last section.

3.2.2. Folding of two distributions under Multiplication

As an example for anon-linear operation the following equation is used:
profit = ROI* capital
The exogenous variables are retum on investment (ROT) and capital. Profit is the endogenous variable.
(i) Gaussian distribution
In the case of a Gaussian probability function the variables are distributed as:

ROI ~{0.25,0.025?) gng  capital ~ N(So, 42)_

— 2 2
The proposal distribution is as in section 3.2.1 a Gaussian distribution with #ror = 0.25 and Cror =0.025 , as

— 2 _ 42
well as Heapital = 80 and Teawna =4 Tpe parameters of the simulation are 1000 particles and 5000 repetitions.
The theoretical mean can be calculated by formula (2) and is#= 20 The simulated mean of profit is

7= . . . . . 2 . .
‘3"8(4”)_ 19.99 The variance which is computed by equation (5) and is equal to ¢~ =5.01_ The simulated variance

is 67=4.99 A Kolmogorov-Smimov goodness of fit test for all simulated particles per run has a mean of p=0
The underlying distribution is a normal distribution with the theoretical mean and variance. Because of the zero
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values of these two-sided tests, the Hy-hypothesis that the simulated data is a Gaussian distribution must be rejected.
In Figure 4 it becomes obvious that the simulated distribution is skew.
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Figure 4: Histogram of a sampled profit from one run

(ii) Triangular distribution

In case of a triangle-probability function, ROI is symmetrically distributed in the interval [0.24, 0.26] and capital is
also symmetrically distributed, however, in the interval [76, 84]. The proposal distribution is an uniform
distribution. The other parameters do not differ from (i). Figure 5 shows the simulated profit. As before the
simulated data differs clearly from the theoretical distribution at the boundaries. The expected mean of profit is

#=120 using equation (2} and the simulated value is meaﬂ(&) =20 The variance calculated by using equation (5}
is 67 =0.275 which corresponds to 6 =0.215 . The theoretical value for the lower bound is / = 18.24 and for the
min@z 18.29

upper bound # =21.84  The minimum of the simulated data is and the maximum is

max(f1)= 21.77
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Figure 5: Simulated and expected triangle distributions

If the endogenous variables are described by a triangle-probability function, the simulated data for the exogenous
variable should follow a triangle distribution. The two-sided Kolmogorov-Smirnov test has amean in the p-values of
0. Thus the hypothesis, that the profit is described by a symmetrically triangle-distribution in the interval [18.24,
21.84] is rejected.

(iii) Contaminated Gaussian distribution
The next example the variables ROI and capital are distributed as a two-peak Gaussian which is described by
equation (7):

ROI: =021 6°=005" 14,2031 0,/=006" i ;=04
2 2 2 2
Capital: M =T1 o =10° u; =8 ;" =8 ;=06

The proposal distribution is a Gaussian distribution. From that distribution samples can be more easily drawn and
thus the simulation needs less time. The simulation parameters remain as before.

The mean of the simulated data for profit is “¥& (f1)=20.03 Equation (2) gives amean of # =20 and equation (5)

gives a variance o = 6.19 . The variance of the simulated profit is 6% =6.78. Figure 6 shows a distribution of the
simulated mean and the simulated standard deviation of profit.
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Figure 6: Histogram of the sampled mean and standard deviation of profit

3.2.3. Folding two distributions under Division

The second non-linear operation is described in the following part. An equation with this operation is:
profit margin = profit{transaction volime.

Profit and transaction volume are the exogenous variables and the profit margin is the endogenous.

(i) Gaussian distribution
In the first case, profit and transaction volume are described by a Gaussian distribution function. The exogenous
variables are distributed with

profit ~ N(20,22) and tramsaction volume ~ N(l 00,57 )
The proposal distribution is selected also a Gaussian distribution in order to reduce the simulation size. The
parameters of particles and repetition are the same as before.

The mean of the simulated data of profit margin is £~ 0.20044 ¢4 corresponds to the theoretical estimated value

of equation (3) which is #=02005 The standard deviation, which can be estimated using equation, (6) is

¢ = 0.0005 | that is faced with a standard deviation of & = 0.0005 from the simulated data for profit margin.
Because of these resulis, a Kolmogorov-Smirnov goodness of fit test is implemented with the theoretical mean and
variance for each run. In order to test the simulated data, however, a standardization of the above distribution to

N(O’ 1) is applied. Because division of two independent standard Gaussian distributed variables produces a Cauchy-
distribution with parameters median equal to 0 and % equal to 1, cf. Miiller (1983). The mean of the computed p-
values of the two-sided test is 0.548. So the Hy-Hypothesis cannot be rejected and the simulated data support a
Cauchy distribution with the theoretical computed mean and variance. Figure 7 shows the simulated data of profit
margin, profit and transaction volume selected from one run.
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Figure 7: Sampled distributions from all variables in profit margin = profit / transaction volume (Gaunssian
distributed variables)

(ii) Triangle distribution

If both endogenous variables are symmetrically distributed with a triangle function the following results arise:

Profit is distributed in the interval [18, 22] and transaction volume in the interval [90, 110]. The proposal
distribution is an uniform distribution for both variables. The algorithm is run 5000 times with 1000 particles. The

simulated mean of profit margin is #¥& (5)=0.2003 and the standard deviation is & = 0.102 | Estimating the mean
by using equation (3) results in 4~ 0.2003 414 the standard deviation can be approximated by equation {6) with

o = 0.116 . A Kolmogorov-Smirnov test is in this case is impossible, because the 2™ moment does not exist.

(iii) Contaminated Gaussian distribution
As a last example profit and transaction volume are distributed as described in equation (7).

2 2

Profit: M =21 o"=3 ;=20 6,"=2{f£=06.
2 2

Transaction volume: =90 o"=3 ;=105 0, =5 5e=07,

The proposal distribution for both variables is a Gaussian and all other simulation parameters are as above.

The simulated profit margin has a mean of avg(f1)=0.2037 and a standard deviation of &= 0.0312 The

estimation of the mean is £ = 0-204 by using equation (3) and equation (6) calculates the estimation of the standard

deviation with € = 0.0299  Figure 8§ shows the histogram of the simulated mean and of the simulated standard
deviation for profit margin.
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Figure §: Distribution of mean and standard deviation of profit margin
(contaminated Gaussian distribution)

4. Variancereduction Techniques

The problem of too large deviations caused by simulation can be reduced by robust estimation. To achieve
robustness the extreme values at both ends must be eliminated from the sample. A robust method is the y-trim mean
and y-trim variance. This implies to drop the g upper and g lower sampled values. The parameter g describes the
amount of data which will be taken out from sample of size R. The estimator for the mean is changed to:

- 1
Accordingly, the estimator for the variance is:
. T
Gy = R-2.g-1 Z(xi _9”}')
=g+l (9)

Because the sample size is reduced, sampling should be extended. The amount of post sampled particles depends on
the  target sampled size and the  y-rim. The  relationship can be  described  by:

sampling  particles = demanded  particles{-2-y)  The v parameter iz dependent on the variance of the

variable. If the variance is high, v should be increased. On the other hand, the parameter should be set to 0 for a low
variance. This will reduce the sampling effort and, consequently, speed-up the algorithm.

Our new MH algorithm with trimming has the following steps:
1. Initialization of the given exogenous variables with proposal distributions and desired probability functions.
The parameter for trimming has to be set and the sampling size determined
Use the Metropolis-Hastings algorithm to sample from the distribution of the exogenous variables
Derive the distribution of the endogenous variables via the equation-system
Calculate the means and variances of all variables by using estimators from equation (8) and (9)
If the repetition size is not reached run by run, goto 2

MR L
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. Simulation of a system of equations

The following example illustrates, that not only a single equation but a full system of equations can be simulated by
the algorithm “Metropolis-Hastings with Trimming™.
The exogenous variables are capital, costs and transaction volume and they are distributed as follows:

capital ~ N(80,42) COStS ~ N(80,42) and Fansaction volume ~ N(IOO,SE)
To keep the simulation size small, the proposal distribution for the endogenous variables is also a Gaussian
distribution. The parameters of simulation experiments are as before.
The following equations constitute the system of equations:

profit = transaction volume — costs

return on investment profit | capital

profit margin prafit | transaction volume

capital  turnover = transaction volume [ capital

Figure 9 shows the distributions of mean and standard deviation of all variables. The sampling is done with ¢ equals
to 0 {no trimming).
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Figure 9: Simulated means and standard deviations of the DuPont system (no trimming allowed)

Figure 10 is the version where the y-trimmed tough estimation is used. The value of v is set to 0.3. The shrinkage of
the spread of all distributions becomes evident, cf. Figure 9 and 10.
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Figure 10: Simulated means and standard deviations of y-trimmed DuPont System (v = 0.3 trimming set)

6. Results and Perspectives

We showed that simulation based upon the Meiropolis-Hastings algorithm is a sound method to evaluate multi
equation systems. The necessary inputs are the system of equations and the probability functions of the exogenous
variables. All other variables can be simulated. If the sampling size is adequate, the sampling distributions are
similar to the theoretical distributions. Most of those theoretical distributions are not analytically derivable, thus
sampling is the only way to solve such systems.
The DuPont system can be used for different controlling functions in a company. The improvement of using random
variables instead of crisp numbers is obvious, if measurement errors of various kinds are effective. The controller
can use simulation to accept or reject provided data given his domain knowledge as hypothesis.
The results of our simulation study of non-linear equation systems like the DuPont system are:
+  Using the Metropolis-Hastings algorithm is a very flexible method to sample from any probability
function. Moreover, these samples can be further used.
* A critical drawback is the sampling from a probability density function defined on a finite interval.
s Ifthe variance is large, the MH algorithm should be modified to MH with trimming. The
simulation size must be adapted. The pay-off for increased simulation efforts are improved
estimators.
However further challenges still exist, and more research on simulation of closed intervals is needed. Another
important area is the similarity between sampled distributions. Equally important issue is to investigate the sampling
procedure when an equation system is over-determined.
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